IDEALIZATION OF A DECOMPOSITION THEOREM

M.Sebasti Jeya Pushpam,

Department of Mathematics, Auxilium College of Arts and Science for Women, Pudukkottai- 614 602, India

pushjeya@gmail.com

Department of Mathematics, Auxilium College of Arts and Science foe Women (Affiliated to Bharathidasan University), Karambakudi – 622302.

ABSTRACT: In 1986, Tong [13] proved that a function $f : (X, \tau) \to (Y, \varphi)$ is continuous if and only if it is α -continuous and A-continuous. We extend this decomposition of continuity in terms of ideals. First, we introduce the notions of regular-I-closed sets, A_{τ} -sets and A_{τ} -continuous functions in ideal topological spaces and investigate their properties. Then, we show that a function $f : (X, \tau, I) \to (Y, \varphi)$ is continuous if and only if it is α -I-continuous and A_{τ} -continuous.

Keywords: α -continuous and A-continuous, α -I-continuous and A₁-continuous

Contents

1. Introduction

- 2. Preliminaries
- 3. Regular-I-closed sets
- 4. \mathbf{A}_{I} -sets

5. Idealization of a decomposition theorem

1. Introduction

In 1992, Jankovic and Hamlet [9] have introduced the notion of I-open sets in ideal topological spaces. Abd EI - Monsef et al. [1] further investigated I-open sets and I-continuous functions. In 1999, Dontchev [3] introduced the notion of pre -I - open sets which is weaker than that of I-open sets and by using this set, he provided a decomposition of I-continuity. Hatir and Noiri [5] introduced the notions of B₁-sets, C₁-sets, α -I-sets, semi-I-sets and β -I - open sets to obtain decompositions of continuity.

In this paper, first, we introduce the notions of regular-I-closed sets, A_1 -sets and A_1 -continuous functions in ideal topological spaces and investigate their properties. Then, we show that a function $f:(X, \mathcal{T}, I) \rightarrow (Y, \varphi)$ is continuous if and only if it is α -I-continuous and A_1 -continuous.

2.Preliminaries

Throughout the present paper, spaces always mean topological spaces on which no separation property is assumed unless explicitly stated. In a topological space (X, \mathcal{T}) , the closure and the interior of any subset A of X will be denoted by Cl(A) and Int(A), respectively. A subset A is said to be regular closed if A = Cl(Int(A)). An ideal is defined as a nonempty collection I of subsets of X satisfying the following two conditions: (1) If $A \in I$ and $B \subset A$, then $B \in I$; (2) If $A \in I$ and $B \in I$, then $A \cup B \in I$. Let (X, τ) be a topological space and I an ideal of subsets of X. An ideal topological space is a topological space (X, τ) with an ideal I on X and is denoted by (X, τ) . For a subset $A \subseteq X$, $A^*(I) = \{x \in X | U \cap A | A \notin I \text{ for each neighborhood } U \text{ of } x\}$ is called the local function of A with respect to I and τ [10]. X^{*} is often a proper subset of X. The hypothesis X = X^{*} [7] is equivalent to the hypothesis $\tau \cap I = \phi$ [12]. The ideal topological spaces which satisfy this hypothesis are called Hayashi-Samuels spaces. We simply write A^* instead of $A^*(I)$ in case there is no chance for confusion. For every ideal topological space (X, τ , I), there exists a topology τ^* (I), finer than τ , generated by $\beta(I, \tau) = \{U \setminus I | U \in \tau \text{ and } I \in I\}$, but in general $\beta(I, \tau)$ is not always a topology [8]. Additionally, $Cl^*(A) = A \cup A^*$ defines a Kuratowski closure operator for $\tau^*(I)$.

The following lemma is useful in the sequel:

Lemma 1 [8]. Let (X, τ , I) be an ideal topological space and A, B subsets of X. Then the following properties hold:

- a) If $A \subset B$, then $A^* \subset B^*$,
- b) $A^* = Cl (A^*) \subset Cl (A)$,
- c) (A*)*⊂A*,
- d) $(A \cup B)^* = A^* \cup B^*$.

We recall some definitions used in the sequel.

DEFINTION 1. A subset A of a topological space (X, τ) is said to be

- a) α -open [11] if A \subset Int (cl (Int (A))),
- b) A-set [13] if $A = U \cap V$, Where U is open and V is regular closed,
- c) Locally-closed [2] if $A = U \cap V$, Where U is open and V is closed,
- d) α *- set [6] if Int (A) = Int (Cl (Int (A))),
- e) C-set [6] if A = U \cap V, Where U is open and is an α *-set.

DEFINITION 2. A subset A of an ideal topological space (X, τ , I) is said to be

- a) * dense in itself [7] if $A \subset A^*$,
- b) τ *-closed [8] if A* \subset A,
- c) *-perfect [7] if A=A*,
- d) Semi-I-open [5] if $A \subset Cl^*(Int(A))$,
- e) α -I-open [5] if A \subset Int (Cl* (Int(A)),
- f) α *-I-open [5] if Int(A)=Int (Cl* (Int(A))),
- g) C₁-set [5] if A = $U \cap V$, Where U is open and is α *-I-open,
- h) Pre-I-open [3] if $A \subset Int (cl^*(A))$,
- i) I-open [9] if $A \subset Int (A^*)$,
- j) I-locally-closed [3] if $A = U \cap V$, Where U is open and V is *-perfect.

3. Regular-I-closed sets

DEFINITION 3. A subset A of an ideal topological space (X, τ , I) is said to be regular-I-closed if A = (Int (A))*.

We denote by R $_{_{I}}C(X, \tau)$ the family of all regular-I-closed subsets of (X, τ , I), when there is no chance for confusion with the ideal.

PROPOSITION 1. For a subset A of an ideal topological space (X, τ , I), the following properties hold:

- a) Every regular-I-closed set is α *-I-open and semi-I-open,
- b) Every regular-I-closed set is *-perfect.

PROOF. a) Let A be a regular-I-closed set. Then, we have $cl^*(Int(A)) = Int(A) \cup$ (Int(A))*=Int(A) \cup A=A. Thus, Int(Cl*(Int(A))) =Int(A) and A \subset Cl*(Int(A)). Therefore, A is α *-I-open and semi-I-open.

b) Let A be a regular-I-closed set. Then, we have A=(Int(A))*. Since Int(A)⊂A, (Int(A))*⊂A* by lemma 1. Then, we have A=(Int(A))*⊂A*. On the other hand, by lemma 1 it follows from A=(Int(A))* that A*=((Int(A))*)*⊂ (Int(A))*=A. Therefore, we obtain A=A*. This show that A is * -perfect.

REMARK 1. The converses of proposition 1 need not be true as the following examples show.

EXAMPLE 1. Let X=a, b, c, d}, $\tau = \{\phi, X, \{a, c\}, \{d\}, \{a, c, d\}\}$ and I={ ϕ , {c}, {d}, {c, d}}.

- Set A={a, b}. Then, A is an α*-I-open set which is not regular-I-closed. For A={a, b}⊂X, Since Int(A)=φ, (Int(A))*=φ and hence Cl*(Int(A)) = Int(A)∪ (Int(A))*= φ . Thus, we have Int(cl*(Int(A)))=φ = Int(A) and hence A is an α *-I-open set. On the other hand, since (Int(A))*=φ ≠{a, b} = A, A is not regular-I-closed.
- 2) Set A={a, c}. Then, A is a semi-I-open set which is not regular-I-closed. For A={a,c} ⊂ X, Since, Int(A)={a,c},(Int(A))*={a,b,c} and hence Cl*(Int(A))=Int(A) ∪ (Int(A))*={a, b, c}={a, c}=A. This shows that A is a semi-I-open set. On the other hand, (Int(A))*={a, b, c}≠{a, c}=A and hence A is not regular-I-closed.
- 3) Let X={a, b, c}, τ ={φ,X,{a},{a, b}} and I={φ,{a}, {b}, {a, b}}. Set A={c}. Then A is -perfect but not regular-I-closed. For A={c}⊂X, A*={c}=A and hence A is * -perfect. On the other hand, since Int (A)= φ and I we have (Int(A))*=(φ)*=φ ≠ {c}=A. This shows that A is not regular-I-closed.

COROLLARY 1. Every regular-I-closed set is τ *-closed and *-dense-in-itself.

PROOF. The proof is obvious from proposition 1.

PROPOSITION 2. In an ideal topological space(X, τ ,I), every regular-I-closed set is regular closed.

PROOF. Let A be any regular-I-closed set. Then we have $(Int(A))^*=A$. thus, we obtain that $cl(A)=cl((Int(A))^*)=(Int(A))^*=A$ by lemma1.Additionally, by lemma 1, we have $(Int(A))^* \subset Cl(Int(A))$ and hence $A=(Int(A))^* \subset Cl(Int(A)) \subset Cl(A)=A$. Then we have A=Cl (Int(A)) and hence A is a regular closed set.

REMARK 2. The converse of proposition 2 need not be true as the following example shows.

EXAMPLE 2. Let X= {a, b, c, d}, $\tau = \{\phi, X, \{a, c\}, \{d\}, \{a, c, d\}\}$ and I={ $\phi, \{c\}, \{d\}, \{c, d\}\}$. Set A={b, d}. then A is a regular closed set which is not regular-I-closed. For A= {b, d}⊂X, Since Int(A)={d}, Cl (Int(A)) =Cl({d}) = {b, d} = A and A is a regular closed set. On the other hand, since Int(A)={d} and {d} ∈ I, we have (Int(A))*=({d})*= $\phi \neq \{b, d\}=A$ and hence A is not regular-I-closed.

PROPOSITION 3. Let (X, τ, I) be an ideal topological space and $I = \phi$ or N, where N is the ideal of all nowhere dense sets.

Then a subset A of X is a regular-I -closed set if and only if A is regular closed.

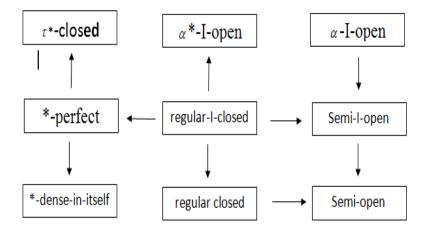
PROOF. By proposition 2, every regular-I-closed set is regular closed. If I= { ϕ }(resp. N), then it is well-known that A*=Cl(A) (resp. A*=Cl (Int(Cl(A)))).Therefore , we obtain (Int(A))*=Cl(Int(A))(resp.(Int(A))*=Cl(Int(Cl(Int(A))))=Cl(Int(A))).Thus, regular-I-closed-ness and regular closedness are equivalent.

REMARK 3. Since every open set is α -I-open, regular-I-closedness and α -I-openness (and hence openness) are independent of each other as the following example shows.

EXAMPLE 3. In Example 1(2), A={a, c} is an open set but not a regular-I-closed. On the other hand, set A={a, b, c}. Then A is a regular-I-closed set which is not α -I-open. For A={a, b, c} ⊂ X, Int(A)={a, c} and (Int(A))*={a, b, c}=A. Hence A is a regular-I-closed set. On the other hand, since (Int(A))*={a, b, c}, we have Cl*(Int(A))=Int(A) ∪ (Int(A))*={a, b, c} and Int(Cl*(Int(A)))= {a, c}• {a, b, c}=A. Hence A is not α -I-open.

REMARK 4. For the relationship related to several sets defined above, we have the

Following diagram:



We can say that α *-I-openness and τ *-closedness are independent of each other. In Example 1(2), A= {a, c} is an α *-I-open set which is not τ *-closed. In Example 1, A= {b, d} is a τ *-closed set which is not α *-I-open. For, A*={b}⊂{b, d}= A and A is τ *-closed. Moreover, Cl*(Int(A))=Cl*({d})= ϕ and hence Int(Cl*(Int(A)))= $\phi \neq \{d\}$ =Int(A). Therefore, A is not α *-I-open. Additionally, we can also say that regular closed and *-dense-in-itself are independent notions. In Example 1(2), A= {a, c} is a *-dense-in-itself set which is not regular closed. For, A*={a, b, c} = A and Cl(Int(A))=Cl(A)={a, b, c} \neq {a, c}=A. Moreover, A={b, d} is a regular closed set which is not *-dense-in-itself. We, recall that Hatir and Noiri [5] showed that α *-I-openness and semi-I-openness (resp. α -I-openness) are independent of each other.

4. A_I -sets

DEFINITION 4. A subset A of an ideal topological space (X, τ , I) is called are A₁-set if A=U \cap V, where U $\in \tau$ and V \in R₁C(X, τ).

We denote by $A_{I}(X, \tau)$ the family of all A_{I} -sets of (X, τ, I) , when there is no chance for confusion with the ideal.

PROPOSITION 4:

Let (X, τ, I) be an ideal topological space and A a subset of X. Then the following properties hold.

a) If A is an open set and (X, τ, I) is a Hayashi-samuels space, then A

is an A_I-set,

b) If A is a regular-I-closed set, then A is an A_I-set.

PROOF:

Since $X \in \tau \cap R_I C(X, \tau)$, the proof is obvious.

REMARK 5:

The converses of proposition 4 need not be true as the following examples show.

EXAMPLE 4:

Let X={a,b,c,d},
$$\tau = \{X, \phi, \{a,c\}, \{d\}, \{a,c,d\}\}$$
 and I={ $\phi, \{c\}, \{d\}, \{c,d\}\}$.

(1). Set A={a,b,c}. Then A is an A_I-set but not open. For A={a,b,c} $\subset X$, since Int(A)={a,c},(Int(A))*={a,b,c}=A and hence A is a regular-I-closed set. Since A=X \cap A and X $\in \tau$, A is an A_I-set. On the other hand, Int(A)=

 $\{a,c\} \neq \{a,b,c\}=A$ and hence A is not open.

(2) . Set $A=\{a,c\}$, then by Example 1(2) A is not regular-I-closed. Set V=

{a,b,c}.Then by Example3,V is regular-I-closed and A is open.Therefore,

 $A=A \cap V$ is an A_I -set.

PROPOSITION 5:

Let (X, τ, I) be an ideal topological space and A a subset of X. Then the following properties hold `:

a) If A is an A_I-set, then A is a C_I-set and I-locally-closed,

b) If A is an A_I-set, then A is an A-set.

PROOF:

This is an immediate consequence of proposition 1 and 2.

REMARK 6:

The converses of proposition 5 need not be true as the following examples show.

EXAMPLE 5:

In Example 1(1),A={a,b} is a C_I-set but not an A_I-set. For A={a,b} \subset X, we have already shown that A is an α *-I-open set in

Example 1(1). We obtain that A is a C_I-set by using [5,proposition 3.2.c].

Also, we have already shown that A is not a regular-I-cloesd set and X is the only open set which contains A. Hence A is not an A_I-set. Further-

more, since $A^* = \{a, b, c\} \neq A$, A is not *-perfect and consequently A is not

I-locally-closed.

(2). Let A={c}. Then by Example 1(3) A is *-perfect and not regular-I-

Closed. Therefore, A is I-locally-closed and not an AI-set. Furthermore,

We can say that A is α^* -I-open by using [5, propositions 3.1 and 3.2].

Consequently, A is a C_I-set.

(3) . Let A={b,d}. Then by Example 2, A is a regular closed set which is not regular -I-closed. Therefore A is an A-set which is not an A_I -set.

PROPOSITION 6:

For a subset A of a Hayashi-samuels space (X, τ ,I),the following properties are equivalent:

a) A is an open set,

b) A is an α -I-open set and an A_I-set,

c) A is an pre-I-open set and an A_I-set.

PROOF:

a) \Rightarrow b). Let A be an open set. Hence A is an α -I-open set by[5]. On the other hand ,A =A \cap X,where A $\in \tau$ and X is a regular-I-closed set. Hence A is an A_I-set.

b) \Rightarrow c). This is obvious since every α -I-open set is pre-I-open.

c) \Rightarrow a). Let A be pre-I-open and an A_I-set. Then A=U \cap V,

Where $U \in \tau$ and $V \in R_I C(X, \tau)$ since A is pre-I-open, we have $A=U \cap V$

 \subset Int(Cl^{*}(U \cap V)) \subset Int(Cl^{*}(U) \cap Cl^{*}(V)). By corollary 1,V is τ *-closed and Cl^{*}(V)=V.Therefore,we have Int(Cl^{*}(U) \cap Cl^{*}(V))=Int(Cl^{*}(U) \cap V)=

 $Int(Cl^*(U) \cap Int(V)) \text{ and } U \cap V \subset U \cap Int(Cl^*(U)) \cap Int(V) = Int(U \cap Cl^*(U) \cap Int(V))$

V)=Int(U \cap V).consequently,we obtain U \cap V \subset Int(U \cap V) and A=U \cap V is open.

5. Idealization of a decomposition theorem

DEFINITION 5:

A function f:(X, τ , I) \rightarrow (Y, φ) is said to be A_I-continuous(resp.

CI-continuous[5], I-LC-continuous[3], A-continuous[13]) if for every

 $V \in \varphi$, f⁻¹(V) is an A_I-set (resp.C_I-set, I-locally-closed set, A-set).

PROPOSITION 7:

For a function f:(X, τ , I) \rightarrow (Y, φ), the following properties hold:

a) If f is A_I-continuous, then f is C_I-continuous.

b) If f is A_I-continuous, then f is I-LC-continuous.

c) If f is A_I-continuous, then f is A-continuous.

PROOF:

The proof is obvious from proposition 5.

REMARK 7:

The converses of proposition 7 need not be true as the following example shows. EXAMPLE 6:

Let (X, τ, I) be the same ideal topological spaces as in Example 1(1) and Example 2 for (1),(2) and (3), respectively. Let $Y = \{a, b\}$ and $\varphi = \{Y, \phi, \{a\}\}$.

(1) Let $f:(X, \tau, I) \rightarrow (Y, \varphi)$ be a function defined as follows: f(a)=f(b)

=a And f(c)=f(d)=b. Then f is C_I-continuous but not A_I-continuous by Example 1(1).

(2) Let $f:(X, \tau, I) \rightarrow (Y, \varphi)$ be a function defined as follows: f(a)=f(b)

=f(d)=b and f(c)=a. Then f is I-LC-continuous but not A_I -continuous by Example 5(2).

(3) f: $(X, \tau, I) \rightarrow (Y, \varphi)$ be a function defined by f(b)=f(d)=a and f(a)

=f(c)=b. Then f is A-continuous but not A_I-continuous by Example 2.

DEFINITION 6:

A function f:(X, τ , I) \rightarrow (Y, φ) is said to be z-I-continuous[5]

(resp. Pre-I-continuous [3]) if $f^{-1}(V)$ is α -I-open (resp. Pre-I-open) in X For every open set V of (Y, φ) .

THEOREM 1:

Let (X, τ, I) be a Hayashi-samuels space. For a function $f:(X, \tau, I) \rightarrow (Y, \varphi)$, the following properties are equivalent:

a) f is continuous,

b) f is α -I-continuous and A_I-continuous.

c) f is pre-I-continuous and A_I-continuous.

PROOF:

This is an immediate consequence of proposition 6.

LEMMA 2 (Dontchev [3]):

Let (X, τ, I) be an ideal topological space and $I = \{\phi\}$ or N. Then a subset A of X is pre-I-open if and only if A is preopen.

The following results are shown by Tong [13] and Ganster and Reilly [4] for the usual topological space.

COROLLARY 2:

Let (X, τ, I) be an ideal topological space and $I = \{\phi\}$ or N. For a function $f:(X, \tau, I) \rightarrow (Y, \phi)$, the following properties are equivalent:

a) f is continuous,

b) f is α -continuous and A-continuous (Tong [13]),

c) f is percontinuous and A-continuous (Ganster and Reilly[4]).

PROOF:

(1) Let $I=\{\phi\}$, we have $A^*=Cl(A)$ and $Cl^*(A)=A\cup A^*=Cl(A)$ for any Subset A of X. Therefore, we obtain (a) A is α -I-open if and only if it is α -open and (b) A is an A_I-set if and only if it is an A-set. The proof follows from Lemma 2 and Theorem 1 immediately.

(2) Let I=N, then we have $A^* = Cl(Int(Cl(A)))$ and $Cl^*(A) = A \cup A^* =$

 $A \cup Cl(Int(Cl(A)))$ for any subset A of X. Therefore,

 $Int(Cl^{*}(Int(A)))=Int[Int(A) \cup Cl(Int(Cl(Int(A))))]$

=Int[Int(A) \cup Cl(Int(A))]

=Int(Cl(Int(A))).

We obtain (a) A is α -I-open if and only if it is α -open and (b) A is an A_I-set if and only if it is an A-set. The proof follows from Lemma 2 and Theorem 1 imediately.

References

[1] M. E. Abd El-Monsef, E. F. Lashien and A. A. Nasef, on I-open sets and I-continuous functions, Kyungpook Math. J., **32** (1992), 21-30.

[2] N. Bourbaki, General topology, part I, Addison-wesley (Reading Mass., 1966).

[3] J.Dontchev, On pre-I-open sets and a decomposition of I-continuity, Banyan Math. J., **2**(1996).

[4] M. Ganster and I.Reilly, A decomposition of continuity, Acta Math . Hungar.,**56**(1990), 299-301. [5] E. Hatir and T. Noiri, on decompositions of continuity via idealization, Acta Math. Hungar., **96**(2002), 341-349.

[6] E. Hatir, T. Noiri and S. Yuksel, A decomposition of continuity, Acta Math. Hungar., **70** (1996), 145-150.

[7] E Hayashi, Topologies defined by local properties, Math. Ann., **156** (1964), 205-215.

[8] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, **9**7(1990), 295-310.

[9] D. Jankovic and T. R. Hamlett, Compatible extensions of ideals, Boll. Un. Mat. Ital. **(7) 6-B** (1992), 453-465.

[10] K. Kuratowski, Topology, Vol. I, Academic Press (New York, 1966).

[11] O. Njastad, on some classes of nearly open sets, Pacific J. Math., **15** (1965), 961-970.

[12] P. Samuels, A topology formed from a given topological space, J. London Math. Soc. **(2)**, **10** (1975), 409-416.